Package: natural 0.9.0
natural: Estimating the Error Variance in a High-Dimensional Linear Model
Implementation of the two error variance estimation methods in high-dimensional linear models of Yu, Bien (2017) <arxiv:1712.02412>.
Authors:
natural_0.9.0.tar.gz
natural_0.9.0.zip(r-4.5)natural_0.9.0.zip(r-4.4)natural_0.9.0.zip(r-4.3)
natural_0.9.0.tgz(r-4.4-x86_64)natural_0.9.0.tgz(r-4.4-arm64)natural_0.9.0.tgz(r-4.3-x86_64)natural_0.9.0.tgz(r-4.3-arm64)
natural_0.9.0.tar.gz(r-4.5-noble)natural_0.9.0.tar.gz(r-4.4-noble)
natural_0.9.0.tgz(r-4.4-emscripten)natural_0.9.0.tgz(r-4.3-emscripten)
natural.pdf |natural.html✨
natural/json (API)
NEWS
# Install 'natural' in R: |
install.packages('natural', repos = c('https://hugogogo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hugogogo/natural/issues
Last updated 7 years agofrom:745ee2468e. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win-x86_64 | OK | Oct 26 2024 |
R-4.5-linux-x86_64 | OK | Oct 26 2024 |
R-4.4-win-x86_64 | OK | Oct 26 2024 |
R-4.4-mac-x86_64 | OK | Oct 26 2024 |
R-4.4-mac-aarch64 | OK | Oct 26 2024 |
R-4.3-win-x86_64 | OK | Oct 26 2024 |
R-4.3-mac-x86_64 | OK | Oct 26 2024 |
R-4.3-mac-aarch64 | OK | Oct 26 2024 |
Exports:make_sparse_modelnlasso_cvnlasso_patholassoolasso_cvolasso_path
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Get the two (theoretical) values of lambdas used in the organic lasso | getLam_olasso |
Get the two (theoretical) values of lambdas used in scaled lasso | getLam_slasso |
Generate sparse linear model and random samples | make_sparse_model |
natural: Natural and Organic lasso estimates of error variance in high-dimensional linear models | natural-package natural |
Cross-validation for natural lasso | nlasso_cv |
Fit a linear model with natural lasso | nlasso_path |
Error standard deviation estimation using organic lasso | olasso |
Cross-validation for organic lasso | olasso_cv |
Fit a linear model with organic lasso | olasso_path |
Solve organic lasso problem with a single value of lambda The lambda values are for slow rates, which could give less satisfying results | olasso_slow |
plot a natural.cv object | plot.natural.cv |
plot a natural.path object | plot.natural.path |
print a natural.path object | print.natural.path |
Standardize the n -by- p design matrix X to have column means zero and ||X_j||_2^2 = n for all j | standardize |